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ABSTRACT

h'tconsider the estimation of a collection of location

parameters when it is believed, a priori, that their ordering

is known. The least squares and least absolute deviations

estimates subject to this ordering restriction have been

studied in the literature. We seek robust estimators which

perform well for a broad range of distributions. The results

of a Monte Carlo study and a study of computation algorithms

are discussed.

(1)This research was sponsored by the Office of Naval Research

under ONR contract N00014-80-C-0322.

(2)Parts of this work are taken from this author's doctoral

dissertation written at the University of Missouri-Rolla.
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1. INTRODUCTION AND SUMMARY. We consider the cstima;t ion of

k location parameters when it is believed that they are

nondecreasing. Let 0 1 < 0 < ... < ek denote the parameters

and suppose that independent random samples, X j =1 ,2,...,

n i , i=l,2,...,k, are available. Brunk (1955) obtained the

maximum likelihood estimates of nondecreasing normal means,

which, of course, minimize

k l2 subject to 0 < 6 < 0
i~ ~=(Xi-0)1- 2 - -- V

There are several algorithms for computing these estimates,

but we emphasize the pool adjacent violators algorithm (]1,kVA).

(For a detailed discussion of such algorithms, see Section 2.3

of Barlow et al. (1972).) If the sample means, Xi, are

nondecreasing, then they are the restricted least squares

estimates. If not there is a violation, that is X X.

for some i, then the corresponding samples are pooled and the

two sample means are replaced by the mean of the pooled

sample. Next the resulting k-1 sample means are considered

with the understanding that once two samples are pooled they

must remain together. This process is continued until a

nondecreasing set of means is obtained. If the ith sample

has not been pooled with another, then the estimates of 0.

is Xi, but if the ith sample has been pooled, then the estimate

is the mean of the final pooled sample containing the ith

sample.

As would be expected, these restricted least squales

estimates are unduly affected by extreme observations and so
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robust estimators would be desirable in many situations.

Robertson and Waltman (1968) derived the least absolute

deviations estimates, in particular they obtained the

values which minimize

k i subject to e0 2- -~~i l j= < 0 ( .. -

They also showed that if one uses the sample medians as the

initial estimates (in place of X.i) and computes the median

of the pooled samples rather than the mean, then the PAVA

can be used to compute these estimates also. It is well-

known that the sample median is not very efficient for a

normal model, but this does suggest an approach for obtaining

robust estimates of the 6. Using the notation from Hiuher

(1981), let T be a location statistic, such as the mean,

median or an NI-estimate, which may be thought of as a

functional defined for all empirical distribution functions

(EDFs). One could obtain nondecreasing estimates of the 0i1

by employing the PAVA and using T to obtain initial estimates

as well as the estimates from pooled samples. We denote

such estimates by l < a2 <  ... < ek" (While these estimates

depend on T, we do not indicate this in the notation.)

Robertson and Wright (1980) considered computation

algorithms for order restricted estimates and found that it

is desirable for the estimator, T, to have the Cauchy mean

value property (CMVP). T has the CMVP provided its value

for a pooled sample is between the T values for the two samples.

That is, if Fn and Fm are EDFs based on samples of size n and

m respectively, then
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T(F n)AT(Fm) < T((nF n+mF m)/(n+m)) < '(Fn )VT(1it )

An estimator with this property will be called a Cauchy

mean (CM). If T is a CM, then the PAVA yields the same

estimate independent of the order in which violators are

pooled and these estimates agree with those obtained from

the max-min formulas which are discussed there. Robertson

and Wright (1974) have shown that if T is a consistent CM,

then the estimates obtained from the PAVA also are provided

n. - for each i.1

In Section 2, several classes of robust estimators are

studied to determine if they are CMs. Since so few of those

considered in the literature are, the use of non-CMs is

discussed further. Section 3 describes the results of a

Monte Carlo study of robust estimators for ordered location

parameters. If one wants estimators that perform well over

the range of normal to Cauchy errors, then Gastwirth's

estimator or the trimmed mean which trims 25% on each side

are recommended. The trimmed mean is a little more efficient

for the normal model and Gastwirth's estimator is more

efficient for the Cauchy. The latter is also easier to compute.

If very heavy tailed distributions are not a concern, we

recommend the Huber with c = 1.5 (c is defined in Section 2)

which has the advantages of the CMS.

2. ROBUST CMs AND COMPUT'ATION ALGORITHIMS. In this ,scct ion,

we consider the types of location estimators discussed in

Andrews et al. (1972) to determine which of those would hc
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appropriate for computing order restricted estimates.

An M-estimate is a solution, Tn  T(En ), to an equation

of the form

n== 0, (1

where q is an odd function and s is estimated independently.

(One can also estimate s simultaneously, but, as we shall

see, this may yield an estimator which does not have the

CMVP.) Ilampel and Andrews have proposed some redescendin-

functions (cf. Andrews et al. (1972)), but Hogg (1979)

points out that the M-estimates corresponding to these

functions, as well as Tukey's biweight, may possess

convergence problems when solving iteratively. Since such

an iterative procedure must be implemented several times vhen

computing order restricted estimates, these ' functions were

not considered further. Huber (1964) proposed

i(x) = x for lxi < c and p(x) = c sgn(x) for lx! - c, (2)

with c a fixed positive constant. A common choice for s is

median( Ixi -median(xi) I )/. 6754,

however, it is not difficult to construct examples to show

that if s is computed this way, varying with the sample,

then the resulting estimator need not be a CM. (An example

is given in Magel (1982).) In many situations, the k

populations are assumed to differ only in location and so

one could use a fixed value of s, namely,

s =median(Ix..-median(x.: j=l,2,...,n i) : i=l,2,...j /.675,.

1J 1)
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It is easy to show that the solution set for this p must he

a nonempty, closed interval (possibly one point) and so we

define the estimator to be the midpoint.

Remark. luber'sM-estimator (4i given by (2)) with a fixed s

is a CM.

Proof. Without loss of generality we assume s = I. Let

Tn = T(F n), Im = T(F m ) and T n+ m = T(F n+m) where Fn an

Fm are the EDFs corresponding to two samples and Fn+ m =

(nFn + mFm)/(n+m). Let the solution set for Tn be [al,bl],

for Tm be [a2,b2] and for Tn+m be [a3,b3]. We also assume

that the samples have been labeled so that a1 < a 2* Now

the left hand side (lhs) of (1) can be written as

nj>(-Tn)dFn(x) and we see that

f (x-t)dF n(X)AJ'(x-t)dF (x) < f (x-t)dF n(x)

(3)

j(x-nt)'d ' n(x)mv (x-t) d M(X).

Setting t ; a3 - , E > 0, the middle term of (3) is positive

and so one of the expressions in the rhs of (3) must he

positive. Because a < a2 this implies that a, - L a, .

Letting E 0, yields a3 < a 2. Setting t = a3 in the middle

term implies that one of the terms in the lhs is nonpositive

or a 3 > a I* So if T were chosen to be the Ih endpoint it

would have the CMVP. By symmetry considerations, the same

can be shown for the rh endpoints. If b1 _ b 3 , b2 9 thc,

(a +bl)/2 < (a3 +b3 )/2 < (a 2 +b2)/2. If b < 13 h , then

[a 2 ,b 21 C lal,bl], in which case 1a 3 ,b 3 ] = la,,b,], because
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( + )f x- t F=n f ( -~ l (x) +m (x- t) dFl (x) = 0 ;1,) tt hh')
(n+m)j4J(x t)dFn (x)=njP(x -tJdF n -n ,

--1 b t2

This remark applies when s is fixed, but in the above

definition of Huber's estimate s may vary with the k samples.

However, for a fixed set of variables Xij, s has a fixed

value and if that value is used to compute the 0., then the

order in which violators are pooled will not affect ,

the max-min formulaes will give the same 0., and the norm

reducing property of Robertson and Wright (1974) will impl%

that

maxl<i<k -6i-i < maxl<i<kIT -i0
-- n. 1

So if the error distribution, ie. the distribution of

Xi.-Oi, is symmetric about zero, then *". - 6. for each i

provided n. - for each i.1

Another large class of location estimators are the linear

combinations of order statistics, or L-estimators. This

class includes trimmed means, adaptive trimmed means,

Gastwirth's estimator and Tukey's Trimean, as well as the

mean and median. Leurgans (1981) has shown that there are

only three basic types of L-estimators which possess the CMV':

the mean; weighted midranges, that is a weighted avera ge of

the smallest and largest order statistics, wx (l + (I-w)x

where x < x (2)< < x are the order statistics from

a sample of size n and 0 < w < 1; and weighted percentiles,

X ([np]+l) if np is not an integer, and wx (np) + (l-w)x(ni+l)
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if np is an integer. Hence, the commonly used robust L-estimalors

are not CNls. Hogg (1967) proposed an adaptive estimator which

uses various L-estimators depending on the value of the

sample kurtosis. Two of these, the trimmed mean and the outer

mean are not CMs.

Estimators derived from rank tests for a shift are called

R-estimators. The Hodges-Lehmann estimator, a populalr ,ewt!!helr

of this class, is defined to be the median of pait wise avera,,>

med((xi+x)/2). Magel (1982) gives an example which shots

that this estimator does not possess the CMVlP and the same
)

example shows that this is true if one considers all n pairs,

just those with i < j, or just those with i <j. The folded

medians comprise a closely related class of estimators which

depend on the averages of symmetrically placed order statistics,

ie. (x(1 ) +x (n))/2, (x( 2 J+X (n.1))/2, etc. The Bickel-llodges

estimator, the median of these numbers, does not have the .MVII

(Magel (1982)). It is also shown there that the multiply

folded medians (cf. Andrews et al. (1972) for a description)

are not CNls.

Magel (1982) has also shown that the skipped means and

the one step Hubers do not possess the CMPX. (Andrews et al.

(1972) also discuss these estimators.)

Since so few robust estimators of location have the C\I',

we consider algorithms that do not require this property.

Leurgans (1982) considered a SLOCONI algorithm with linear

functions of order statistics, but noted that the rcsultiig

estimators need not be nondecreasing. Robertson and hrili1
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(1974 , Ixamp Ic 5) considered the est imat ion of o-deircd iudc- and

observed that the max-min formula applied to consistent

estimators which are not C's may produce estimator wlhich are

not consistent. That example also shows that the low'er

sets algorithm (cf. Barlow et al. (1972)) has this same

difficulty. The problem stems from the fact that, tith

estimators that are not CMs, the initial estimates may he

nondecreasing, but yet these algorithms may moditv them

substantially. This does not happen with the PAVA. In

fact, it is clear that if 01 < 02 < ... < (Pk if the

estimator T is consistent and if min <i< k  n. - then ",.

is consistent for 0. for i=1,2,... ,k. So we recommend1

the PAVA when computing order restricted estimates based

on initial estimators which are not CMs. However, there is

one difficulty with this approach. The estimates may

depend on the order in which violators are pooled. In

the Monte Carlo study that was conducted, pooling was

always from left to right, starting with the first violktors,

Xi > "xi+l' the ith and i+lst samples are pooled, then

(nix i + ni+ 1X-i+)/(ni + ni+ 1 ) is compared with \i+2' etc.

3. MONTE CARLO RESULTS. Since the small sample properties

of order restricted estimators have proved to be quite

intractable, even in the case of normal means, a Monte

Carlo study was conducted to assess the performance of such

estimators for various choices of T. As was mentioned in

the last section, even for moderate values of k, several



values of T must be computed when employing the PAVA and so Le.

have not considered some estimators because of computaitional

complexities. We have studied the following F: the mean"

median; Tukey's trimean; Gastwirth's estimator (;astt'

symmetrically trimmed means, trimming 15' and 2. 7 on ,ach

side (Trim IS, Trim 25); and Iluber's \-est1ini;1tor with

c 1.5 and . (H 1- 1..5, 11-2.0) . we have assumcd t hat the

X. - . are iid with the distributions studied in ndirc ,

et al. i1972). A key to the distributions used is ogiven in

Table I. Many of these distributions are mixtures and

N(0,l)/1J(0,1) represents the distribution of the ratio of

independent variables, one a standard normal and the other

a uniform variable on (0,1). For k = 2,3,5 and various

choices of 01 0< < .. . < k k 1 k

or 20; each distribution in Table 1; and each T given above,

the mean square error (MSE) associated with cstimatin i

ie. E(O i-0iY, was estimated based on 50010 iteration, 'he

total MISE, - 1 E(0i -0,)-, was estimated by summ ing tI)S k

values and with k,01 < 0 < ... < anJ in error distri-

bution fixed, an estimated relative efficiency for a particular

T was computed by taking the reciprocal of the ratio of its

total MSE to the smallest total MSE for all T in the study.

These estimated relative efficiencies are given in Tables

II through V.

In Tables II and IV, with k and n fixed, the dispersions

in the 0 vector, 0k - 013 are varied. However it is interest ing

ki
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to note that there are no unusual changes in the effi ci (c i cs.

This would lead us to believe that the conclusions that

follow are valid for a reasonable range of dispersions in

(Since the estimators, T, considered are location stg t ia t ic

the 0. - have distributions that are invariant 1nHLl(.

shifts by a constant vector.)

Fi rst , we consider the estimators, in joiijI)s. lie iwi :

trimean and Gast are easily computed L-statistics. (Iast

dominates the median for all but the very heavy tailed

distributions (11 and in some cases 7). However, the loss

in efficiency is at most 10 percentage points in all the

cases considered and the gain is as much as 24 percentage

points in some light tailed cases. The trimean is en the

other extreme, performing even better for light tai1(,]

distributions (a gain of 5 percentage points or so in

efficiency), but considerably worse for heavy ta iled disti i

butions, with a loss of approximately 20 percentage points.

In this group we recommend Gastwirth's estimator unless The

user is quite certain that very heavy tailed errors are not

present, then the trimean could be used.

Andrews et al. (1972) suggest that Hubers, with c in the

range we have considered, might be used in practical

situations. (They consider the (.itichy di stribution tI hc

unreasonable.) In the cases considered here, the cflicic Lcv

of H-2.0 for a normal model was about 3'0 more than 11-1.5,

but that is reversed in even the lightest contamination

considered and there is as much as 10 percentage points



di fference for moderate ta i 1 ed errors. So te recommend I I .5

in this fami ly. If very heavy tai led d ist ri but ions ( ,l c;1n1

be ruled out, an experimenter may prefer 1-1.5 over Ihe

other T in this study. It holds it efficiency in the n,;rnl

model, pe rforvms well for a1 but tle very heNav% t;ail ed

di stributions and has the advantales of a C\.

Among the trimmed meains we recommend a tri mi .

proportion around 25' on each side. The Trrim 15 has

percentage points more efficiency for the normal mod I,

but the losses for moderate and heavy tailed distrihuti on5

(4-6 and 8-10) can be far greater.

If one wants an estimator that performs well over th(

range of situations considered here, then the Trim 23 and

the Gast should he considered. The efficiency of the C;ast

for a normal model is about 4 percentage points smaillcr,

but is up to 7 percentage points larger for the (3;iichv

distribution (cf. k=5). Gastirth's estimator is easicI

to compute. If one feels it is not necessary to guard

against very heavy tailed distributions (7,11), then

l-1.S is recommended. It is about 95' efficient in the

normal case and has the advantage of a C;M.

hile it is not possible to consider enough k and

to draw definitive conclusions, the fact that the

recommendations given above are supported h\ each case

considered strengthens their credibility. Also For each L

and 0 considered, the Monte Carlo experiment waas carried

out for n = 10 and 20, and for k 5 additional -,j, suci



as (0,0,0,0,1) and (2,4,8,10,32), were considered. lacli

case substantiated the recommendations above.
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TABLE: 1. KEY TO THEl ERROR DisTRJBIJTION USED

1. N (0, 1)

2. 90% N(0,1) and 10, N(0,9)

D.Iouble Exponentiil

4. 501% N(0,1) and 50'0 N(0,1))

5. 25'0 N(0,1) and 75%o N(0,9)

6. 90% N(0,1) and 10% N(0,100)

7. 75% N(0,1) and 25% N(0,100)

8. 90% N(0,1) an d 10% N (0 ,1) /11 1

9. 759 N(0,1) and 25% N(0,1)/tl(0,1)

0110. 900 N (0 ,I and 10% N 0 , I/UJ(0 ,)

11. Cauchy
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TABLE II: Rlt'IA'IVL EFFICIENCIES: k=2, n=20

0 = (0,0)

D istrihution Mean Median Trimean G;ast 11-1.5 11-2. 0 Trf i m ,I II il m S

I 1. 000 .675 .865 .819 .959 .987 .91)0 .845

2 730 747 .944 .899 1. 000 969 .1),8 1.) 1

. 503 .639 954 .883 .953 825 1. (I l) 92 5

4 .642 .914 .928 .986 .856 .773 .901 1.00()

5 871 .937 .955 .987 .929 .904 .948 1 .0(0)

6 136 .827 996 .979 .984 .882 .984 1. () 0

.100 .968 .724 1.000 .763 .584 .566 .981

8 <.1 .770 .950 .906 1.000 .973 .988 .938

9 <.1 .828 .987 .965 .982 .900 1.000 .991

10 <.1 .808 .987 .955 .991 .904 1.000 .981

11 <.1 1.000 .696 .904 .647 525 .S)1 .892

6 = (-.3,.3)

1 1.000 703 .882 .838 960 988 .920 .

2 .751 .769 .953 .914 1.000 971 99 193,

3 .528 .683 .964 .927 .967 860 1.0()0 .953

4 .671 .931 .936 .987 .871 .795 .909 1.00(

5 .884 .948 .963 .989 .936 .914 .954 1.0(

6 .158 .845 .988 .982 .977 .882 .977 I1(0(

7 .116 .982 .744 1.000 .785 .614 .589 .982

8 <.1 .782 .951 .914 1.000 .974 .988 .959

9 <.1 .845 .991 .970 .987 .911 1.000 .990

10 <.1 .839 .993 .971 994 .918 1 .00)) 991

I1 <.1 1.000 .715 .901 73 .55t .615 .88()
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TABI, 1 1I: REIA'I:IVL I 1FICII:NC I IS: k1 3, =( (I,I 1

10

0istri ution Nlean ledian ITrimean (;a-st I- 1.5 I-2.(1 Tr im I ' Ir yiri 2"

1 1.000 729 .892 .833 .951 .981 9 3 .)Tfh

2 .762 .810 .955 .921 1.000 .9)-78 .85 8 9 .

3 539 .800 .974 .962 1. 000 890 941 .971

4 723 .954 945 1 .000 917 851 92) 992

S.893 .942 .958 .985 .949 .928 975 1.(}()

6 .173 .893 .931 .984 1.000 .978 .809 .)81

.128 1 .000 576 915 7{b7 .010 .430 . )l

8 <.1 .811 .956 .912 1 .00 .986 .95 .9Th

0 . 1 .883 968 .97o 1 .000 935 .8.12 . O

10 . . 871 .9s-4 9.908 1 0 ()(0 .936 8A.1 q. I

1I . 1I 1 .00 o38 .904 7 13 7597 .123 825

n = 20

1 1 .000 .682 .873 .820 9o1 991 9-2 .80(

2 73o 761 949 91) 1 .000 971 .991 .938

3 511 .667 978 .914 9 97 858 1. 000 .93

4 .667 .914 .923 .982 .8o3 .787 .904 1.00()

5 .837 .919 .923 .949 .894 .808 .950) 1 000

6 .163 .841 .992 .978 1 .{000 .904 .984 .9-

.121 .961 772 00 .806 .033 585 9 3

8 <.1 760 944 895 1.00(1 .981 92 913

< .1 .783 929 .90 939 .8(-o .) (88

1) <. 1 .808 974 900 1. 000 927 996 915

1 1.00 .724 919 .087 -52 o I' .88
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TA13II I V REILATIVi: FIFFICI INCIIS, k=3, n=20

0 = (-2,0),2)

Distrihution Mean Median Trimean Gast ti-I.5 If- 2.0 1rim 1 II i1 2.;

t 1.000 .681 .873 .824 .902 .9! .928 .858

2 734 .762 .951 .913 1 .000 970 991 939

3 513 .081 .979 .932 1.000 .865 .987 .940

4 .647 .905 .909 .965 .850 772 89 1.000

5 855 .934 .950 .971 .915 .888 .952 1.0(1

S.147 .845 .984 .981 .993 .895 .963 1. 000

.110 .989 06 1.000 .807 .022 .529 -

8 <.1 .759 .943 .899 1.000 .982 .972 .922

9 <.1 .804 .954 .929 .963 .891 1.000 .991

10 . 1 .818 .980 959 1.000 .924 986 978

Ii <.1 1.000 .694 .903 .680 500 59) 888

o = .33,-. 09, .33)

1 1 .000 714 .885 .840 .963 .988 937 872

2 .762 .785 .955 .919 1.000 .974 .991 .944

3 555 .699 .980 .932 1.000 .875 1.000 .91.

4 .677 .926 .932 .989 .871 .790 .908 1.000

5 .825 .911 .913 .943 .883 .856 .948 1.000

6 .171 .858 .995 .984 1.000 .913 .981 .987

7 118 .963 795 1.000 .815 .646 .002 970

8 .785 .950 .908 1.000 .927 .955 .912

9 <.1 .808 .944 .922 .953 .889 1.000 .989

10 <.1 .834 .983 .967 1.000 .933 1.000 .990

11 <.1 1.000 .728 .923 .688 .574 .01S .870



18

TABLE V: RELATIVE EFFICIENCIES, k=S, n=10

Distribution Mean Median Trimean Gast 11-1.5 11-2.0 Trim 15 Trim 25

1 1.000 .757 .903 .849 .962 .985 .949 .889

2 .782 .828 .958 .924 1. 00 .982 .87 .95.1

3 512 .668 .979 .91o 1 000 .861 .954 99

4 .725 .962 .936 .991 .911 .840h .92 1 . M10

5 .884 .945 .951 .)73 .938 .91()O .971 1

0 .197 .901 .951 .978 1.000 .920 .831 9-5

7 .145 1.000 .645 .945 .823 .672 509 854

8 <.1 .826 .957 .921 1.000 988 .961 940

9 < 1 .888 .967 .971 .987 929 .920 1 .001

10 <.1 .878 .948 .961 1.000 .945 88o .98"

11 <.1 1.000 .724 .919 .687 .572 430 830

0 = (-2.2,-.7,0,0,.7)

1 1.000 .742 .896 .839 .958 .985 .938 .875

2 .776 .820 .955 .925 1.000 .983 .982 .953

3543 .796 .954 .938 1.000 .891 .910 .942

4 .723 .959 .935 .990 .912 .846 .921 1.000

5 .889 947 .956 980 .942 921 .75 I .000

6 .192 .888 .942 .973 1.000 .924 .801 .158

7 .147 1.000 .630 .936 .823 .070 .500 .840

8 <.I .820 .955 .917 1.000 .989 .957 .943

9 <.. .878 .957 .960 .978 .920 .912 1.000

10 <.I .871 .943 .958 1.000 .941 .857 .909

11 <.I 1.000 .642 .912 .743 .032 .431 .834

- .l _ 
"

l H r , - ' - i ' ,
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